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Abstract. We use Monte Carlo simulation to study new features of the (one.dimensional) 
Dommy-Kinzel cellular automaton (CA), Considering the relaxation process of the ‘mqnetim- 
tion’ (the frozen-active order parameter) towards its equilibrium value. we measure its dynamical 
critical exponent :. Also. we investigate the effect of PI, # 0 (non-vanishing external field conju- 
gate to lbe magnetization) on the phase diagram and on the susceptibility. Finally, we introduce 
consmints in the evolution rule of the Domany-Kinzel CA and study the associated criticality 
(critical surfaces and universality classes). 

1. Introduction 

Cellular automata (CA) are totally discrete dynamical systems (discrete space, discrete time 
and discrete number of states) which provide simple models for a great number of problems 
in science. CA have frequently been used to model chemical reactions, crystal growth 
models, turbulence, neural networks. biological systems. or other nonlinear processes far 
from thermal equilibrium [l] .  But it is not only the practicality in simulating differential 
equations, like fluid dynamics, that explain the recent great interest in CA. If the deep nature 
of spacetime turns out to be discrete, CA, and not only the traditional differential equations, 
could be a helpful description of the physical world. 

In the CA context, the discrete space is represented by a regular lattice and with 
each site i of the lattice one associates a variable ui which can take k different values 
ui = 0, 1, . . . , k - 1. The CA time evolution is defined, at each time step, by local rules 
where the value U, at time t depends, in a deterministic or probabilistic way, on the state 
of the system at time f - 1. All the sites are simultaneously updated at each time step. 
Since its dynamics is not restricted to the usual Boltzmann weight and detailed balance, CA 
do not necessarily evolve (in the long time asymptotic limit) towards the standard thermal 
equilibrium. 

The study of CA is a very interesting one because of their fascinating intrinsic dynamics. 
The attractors can present spatial and/or temporal modulations of various kinds (such as 
fractal or translationally invariant structures) as well as spatial andlor temporal chaos. 
Also, the time evolution towards the attractors often exhibits interesting types of sensitivity 
to the initial conditions (with or without damage spread) [2]. Finally, order parameters 
characterizing the various possible attractors (‘phases’) can be studied as well, thus enabling 
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the establishment of the CA phase diagram with all sorts of critical phenomena, critical 
exponents and universality classes. Vanous types of susceptibilities and relaxation times 
can be analysed as 'wel l~  

In this paper, some of the above relevant properties (susceptibility, relaxation time and 
phase diagram for a constrained case) of the (one-dimensional) Domany-Kinzel ck are 
investig,ated in' some detail. throueh Monte Carlo simulations. In these simdations we 
used, for each set ot Darameters dehnina the CA. a Quite laree number (typically up to lbo) 
of random startine confieurations where all states were eauallv Drobable.'. In' section 2 we 
recal1 the model  and^ its phase. diagram. In Section 3 the maanetization relaxation process 
towards its equilibrium value is~studied. In section 4 we investiaate the influence of a 
uniform external field fconiueate to the maenetization) on the ohase diagram as well as on 
the,susceptibility. pinally. in section we introduce a constraint in the evoluhon d e  of 
the CA and discuss the associated criticality (critical surface and universality classes). We 
draw a conclusion in section 6 

2. The Domany-Kinzel CA 

Althwgh d-dimensional (probabilistic) CA describe processes that might be far from 
equilibrium, they can freauentlv be mapped onto"(d + 1)-dimensional statistical-mechkics 
models [3]. The corresponding spin moael is, in general, anisotropic and involves multispin 
interactions and fields. with couDline constants ~ related to the parameters (conditional' 
probabihies). which specity the evolution d e  of the CA. Therefore it is not surprising 
that even one-dimensional CA exhib!t..cOntinUous ph'ase transitions with universal critical 

red by,Domany and Kinzel [4l~consists of a linear chain 
, with periodic boundary conditions. Each site has'two 
of the system at time t is specified by the set [U~) .  At 

en site is~u,(c t 1s ~= O'or 1 according"to the conditional 
), p(fii / i~ 'p( '?dl/1) . , ,, , . . and p(fI/l), We 
p ; , , ~ ~ p $ l \ ~ ? s + ~  p2 and p(m/l )  = po. 

_I, uj/l) .  A poss%ble application of thiS.CA is to model 
57. The Domany-KlnGl CA contains, as'special cases, the 

ercolation and directed compact percolation [6: 7j'on ihe'square , j , ,  . lattice. 
values of (pi. p?). the t --t 00 asymptotic state is hhmogeneous with 

aI1 sites 0 (frozen phase$ or has a hnite fraction of interchangiig sites with value 1 (active 
phase). 'Theie two'phases are connected through a continuous phase transition (characterized 
by universal cridca1,exponents) as demonstrated in the original of Domany 'and Kinzel. 
Recently, it has been si~own numerical&, on a generalized versi ich includes anisotropy. 

~ the actiye phase s&s, in tact, into'two phases, o&y ~ . , ,  one-of , .,,,.,. .,,, them being chaotic [SI. 
These numerical <esults~ received further confirmation .. ,!. i by ,. more , r;, extensive "*,T,. simulations 191, 
as weli'as through med-field-like , ,  ., ' ,  apDroximations , 19,101. 'The complete phase diagram for 
tlie,originaI, isotropic Domany-KinzeI , , 1 , ,, .,, CA is depicted in figure 1 [8]. 

The order pakameiers ch,aracterizing the three phases are the maenetization M, defined 
as the fraction of bites'with yalue~l,  and,the 
the fraction of sites.that, biber between two di 
same,noise (i.e. the same random numbers s 
is sensitive to the hiha1 conditjons and an 'i 
fraction p of the sites of a given contiguration, 
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Figure 1. p(00lI) = 0 and p(IO/l) = 
p(O1/1) (isotropic) phase diagram. The data 
correspond to simulations wilh 3200 siles; 
transients of 10000 (3000) time steps were 
used for lhe frozen-active (aetivwhaotic) 
phase transitions. The damnge was averaged ,,o 

p 1 p ~ l o l l k j l ~ o l l l l  over another 30000 lime steps. 

0 0.5 

frozen phase we have M = 0 and U, = 0; in  the active phase M # 0 and U, = 0; and in the 
chaotic phase M # 0 and \Ir # 0. Let us add that comparison between the present pz = 1 
results and those associated with the directed compact percolation must be done with care 
since it is not obvious that M is proportional to the order parameter introduced in [6,7]. 

3. The time evolution of the magnetization 

In the computational calculation of say the frozen-active critical surface, it is necessary 
to evolve the automaton until it reaches equilibrium. evaluating, at each time step, the 
order parameter M. So, the automaton evolves until there are no large fluctuations of the 
magnetization. The figures 2(a) and ( b )  show the order parameter M, as a function of time 
for two sets of conditional probabilities which correspond to points in the frozen phase, 
respectively far from and near to the critical surface. The behaviour of the transient of 
M, for a point which belongs to the non-frozen phase and which is far from the critical 
surface is shown in figure 2(c).  We observe in figure 2 that the transient is longer near 
the critical surface than far from this surface; it is expected that the necessary time for the 
magnetization to reach equilibrium diverges on the critical surface in the thermodynamical 
limit ( N  + 00). 

As one can see from figure 2, the magnetization shows an exponential decay towards 
its equilibrium value according to the formula 

M, - Mm - e-''' (1) 

where, strictly speaking, M, = lim,+mlimN+m MI (not to be confused with 
limN,, Iim,+, MI, which generically vanishes, as pointed out by Carter [ 1 I]), Near 
the critical surface we expect that the characteristic relaxation time T obeys the power law 

However, for computational simplicity, instead of determining T (and its exponent z) 
from the exponential decay of the magnetization, we measure directly the total time t* 
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Flpre 2. Th: order p m t e r  M, as a function 
of time f far a*'pitic~cufar set of conditional 
pmbsbilities. AI1 the figures are for p2 G 

p(OI/l) = 0.72, (b) PI = 0.7845 and ( c )  
' p ~  = 0.80. Insets. the same in semi-log plot. 
At this value of p2 lhe frozen4ctive critical 
point is at = 0.785. The two first sets of 
gdi t iona l  Erobabilities ( a )  and (b)  belong to 

the non-frozen phase 

- 
p(l l / l )  = 0.50 and for (a) p,  $E P(IO/i) = 

0 2  

! zooo the frozen phase, while the Imt one, (c). is 31 

necessary for the magnetizat.ion to rGch~ its equLIibrium  value.^ -Since r~* Is proportional 
to r ,  equation ( 2 )  leaas to 

(3) 

at fixed p2 .  This expression defines the relaxation 'time c&&l exponent z for this order 
parameter. In figure 3 we present a typical log-log plot'of r* X Ip, - p 1 ~ 1 .  As a result of 
these simulations we find z = 1.0 f4 .03 .  Since, these si,,mulations &e in fact quite large 
ones (involving up to lo6 time steps in a system with 12 &lO'sites ), we believe that the 
emct value might be z = 1. 

There is also , a  similar relvatiqn process associated with the normalized Hamming 
distance Y, the order parameter of ti;". activechaotic phase transition. This process can 
possibly be characterized by a distincf:value for the critical exponent z .  

r* = [PI - Pier' 

, '  I , .  I. , , , I  

4. The effect of a uniform external  field' 

If one considers po G p(OO/1) = 0, it is obvious that, if the configuration of the system 
is zero (i.e. all the sites have'state O)-.t time f, it will remain zero for all subsequent time 
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(pt. - p,) in the isotropic case. The 
data comespaid to simulatbns with 
3200 (m) and 12800 (0) sites. The 
full lines are guides 10 the eye. 

104 
10-L 

P1,-P1 

4 O i l l l l  I 

I F -  

steps (Mm = 0). On the other hand, if po # 0 and the system is at the configuration zero 
at time I ,  it  will acquire a non-vanishing fraction of sites with states different from zero 
(Mm # 0), at subsequent time steps. The probability po is. consequently, analogous to an 
external field in ferromagnets, which destroys the phase transition. This is the reason for 
only considering legal rules (PO = 0) in the Domany-Kinzel CA when we investigate the 
frozen-active critical surface. 

If we now consider po # 0. the frozen-active critical surface disappears but the active- 
chaotic one remains, as shown in figure 4. We can also study the associated susceptibility 

We calculate this derivative numerically. Although this method is not very accurate, 
we used it because of the lack of a Ructuation-dissipation-like relation valid in the frozen 
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. . . . . Figure 5. Susceptibility ,y = 
aM/apol,,o obtained numerically for 
p(ll/I) = 0.1. The data used IO lake 
the numerical derivative or M corre- 
sponds Io m~ II (0) m d  ml II 

0 0.32 0.j.i 0.h 0 4ff 0.b 0.d2 (e), The system consists of 3200 

n m n m  
e 

m n u  
n%n - 

P(1011) sites. 

phase. In figure 5 we show tne susceptibility for p2 = 0.1. This curve shows, besides the 
expected tendency towards divergence at the frozen-active critical surface, a small peak at 
the chaotic-active critical surface. Although hard to understand, we observe systematically a 
secondary peak at the left side of the central one; in order to decide whether this unexpected 
peak is not due to statistical fluctuations, more simulations (and for other values of p0 ) 
would be necessary. It should be noted that more extensive simulations are necessary in 
order to calculate the critical exponent associated with the susceptibility divergence. 

5. Constrained dynamics 

The results we have presented up to now have been obtained by using independent random 
numbers for updating each one of the A' sites at each time t. Let us now generalize this 
by introducing constraints in the Domany-Kinzel CA. The constraints we shall consider 
consist of using, at a given time step. the same random numbers~to update n ( I  < n < N )  
neighbouring sites (the same set of groups of n sites each for all times). The n = 1 model 
recovers the original CA; the n = N IS an extreme case for which a single random number 
is used for updating the entire generation. The phase diagram for various n is shown in 
figure 6. In the n = N + 00 limit, the po = 0 phase diagram exhibits a frozen phase almost 
everywhere since the frozen-active and the active+haotic critical lines have collapsed onto 
the p z  = I line and/or onto the p ,  = I line. This fact cannot be considered as surprising 
since, in the n = N -+ x limit, the system becomes one-dimensional-like in  spacetime 
because the space randomness disappears (whereas it  is two-dimensional for finite n and 
N + 00). Moreover, we can see from this phase diagram (figure 6(a)) that the frozen 
phase area Ar tends to unity whereas the active area A, as well as the chaotic area A, tend 
to zero when n increases from 1 to 00: in addition, we verify that the ratio AJA, decreases 
with increasing n. Hence, tendency towards a 'totalitarian' limit (same random number for 
all the elements of a given generation) decreases chaos, but decreases even more (certain 
types of) activity! 
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Figure 6. p(OO/l) = 0 and p(lO/l) = p(O1/1) phase 
diagram of the CA for n 3 I (n = I recovers the original 
Domany-Kinzel CA). (0)  Full p(IO/l) = p(O1/1) 
space: (b )  n-evolution of the p(10/1) = p(O1/1) = 1 
critical point; ( c )  n-evolution of the p ( l l / l )  = 0 
critical point. The broken lines are guides to the eye. 
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An important question remains to be answered: do the constraints we have introduced 
in the CA modify the known universality classes of this model? To investigate this we 
studied the magnetization critical exponent j3 as a function of the constraints range n. Our 
results are shown in figure 7 and indicate that the universality classes in the constrained and 
in the original cases are the same, except for n = N + CO. This fact cannot be considered 
as completely surprising since each block of n constrained sites behaves, in some sense, at 
criticality, as if it was a unique effective site of the original Domany-Kinzel CA. 

6. Conclusions 

We have studied, by Monte Carlo simulation, some important properties of the isotropic 
(one-dimensional) Domany-Kinzel cellular automaton, A study of the relaxation process 
towards equilibrium of the frozen-active phase transition order parameter was done and its 
relaxation time exponent was determined. The influence of the conditional probability 
po = p ( 0 0 j l )  was analysed. Although this probability is the field conjugate to the 
magnetization, it does not destroy the activeshaotic phase transition. Considering po # 0 
we present preliminary results about the susceptibility for this CA, which, besides the 
tendency towards divergence at the frozen-active critical surface, exhibits sensitivity to the 
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Figure 7. Magnetiwtion critical ex- 
ponent p as a function of the con- 
straints range n for p ( l l / l )  = 0.7. 
The data correspond to simulations with 
32W or 6400 sites; transienls of 500W 
time steps were used for the frozen- 
3ctive phase tmsilion The magnetiza- 

0 0.25 0.50 1.75 1.00 Lion was averaged over another I00000 0'301 I ln  Lime steps. 

active-chaotic transition. Also, we have generalized the Domany-Kinzel cellular automaton 
in the sense that one updates a block of n (1 < n < N )  sites using the same random 
number. Then we calculated the n-evolution of the phase diagram, Finally, we found 
that the universality classes for the constrained case are the same as those of the original 
Domany-Kinzel CA. 
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